Regular solutions of second-order stationary Hamilton-Jacobi equations
نویسندگان
چکیده
We study a second-order stationary Hamilton-Jacobi equation in innnite dimension. This equation is nonlinear and convex with respect to the rst-order term. We use properties of a the transition semigroup associated to the linear equation to write the Hamilton-Jacobi equation in integral form and we prove that this solution is the pointwise limit of a uniformly bounded sequence of classical solutions of approximating problems. Finally, the solution is the value function of the associated optimal stochastic control problem. Some examples are given. Solutions rrguliires des quations d'Hamilton-Jacobi du second ordre non linnaires RRsumm : Nous tudions une quation d'Hamilton-Jacobi stationnaire du second ordre en dimension innnie avec une non-linnaritt du premier ordre convexe. Nous utilisons les propriitts du semi-groupe de transition associi au terme linnaire pour crire l''quation sous forme inttgrale et nous ddmontrons l'existence, l'unicitt et la rrgularitt d'une solution. Nous prouvons aussi que la solution est limite ponctuelle de solutions classiques de probllmes approchhs. Ennn, la solution est la fonction valeur du probllme de contrrle stochastique optimal associi. Nous donnons des exemples.
منابع مشابه
High-order filtered schemes for time-dependent second order HJB equations
In this paper, we present and analyse a class of “filtered” numerical schemes for second order Hamilton-Jacobi-Bellman (HJB) equations. Our approach follows the ideas recently introduced in B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation, SIAM J. Numer. Anal., 51(1):423–444, 2013, and more recently applied by other authors to stationa...
متن کاملUniqueness for unbounded solutions to stationary viscous Hamilton–Jacobi equations
We consider a class of stationary viscous Hamilton–Jacobi equations as
متن کاملA Paraxial Formulation for the Viscosity Solution of Quasi-P Eikonal Equations
Stationary quasi-P eikonal equations, stationary Hamilton-Jacobi equations, arise from the asymptotic approximation of anisotropic wave propagation. A paraxial formulation of the quasi-P eikonal equation results in a paraxial quasi-P eikonal equation, an evolution Hamilton-Jacobi equation in a preferred direction, which provides a fast and efficient way for computing viscosity solutions of quas...
متن کاملL-minimization Methods for Hamilton-jacobi Equations: the One-dimensional Case
The goal of the present paper is to investigate the approximation properties of a new class of L-minimization techniques for approximating stationary HamiltonJacobi equations in one space dimension. Most approximation algorithms of Hamilton-Jacobi equations are based on monotonicity and Lax-Friedrichs approximate Hamiltonians, see e.g. Kao, Osher, and Tsai [13]. Monotonicity is very often invok...
متن کاملStochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment
We study the qualitative homogenization of second-order Hamilton–Jacobi equations in space-time stationary ergodic random environments. Assuming that the Hamiltonian is convex and superquadratic in the momentum variable (gradient), we establish a homogenization result and characterize the effective Hamiltonian for arbitrary (possibly degenerate) elliptic diffusion matrices. The result extends p...
متن کامل